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FOREWORD

This report describes an investigation of the flaw growth behavior
during proof testing, and its subsequent cyclic crack growth
characteristics of deep surface flaws in both 2219-T87 aluminum and
6A1-40 STA titanium performed by The Boeing Aerospace Company from
July, 1875, through December, 1977. The work was administered by
Mr. Gordon T. Smith of the NASA-Lewis Research Center.

The program was conducted originally by the Research and Engineering
and finally by the Boeing Military Airplane Development Division of
the Boeing Aerospace Company, Seattie, Washington, under the
supervision of Mr. H. W. Klopfenstein (Research and Ergineering
Division) and Mr. D. E. Strand (Boeing Military Airplane Division).
The Program Leader was originally Mr. J. N. Masters and finally

Mr. T. E. Dunning. The Technical Leader was R. W. Finger.

Mr. H. Lenhart and H. M. Olden provided testing engineering support,
and G. Jensen produced the technical illustration and art work.

This technical report is also released as Boeing Document D180-24613-1.
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SYMBOLS

KIE Fracture toughness obtained from test of surface flaw
specimen.

KCN Fracture toughness obtained from center crack panel
using initial flaw Tength and maximum 1oad.

X R Critical stress intensity for surface flaw specimen

¢ tests (i.e. the stress intensity at failure either
fracture or breakthrough) calculated using initial
flaw size and gross area failure stress.

KIi Stress intensity calculated using initial flaw size and
maximum appiied stress.

E Modulus of Elasticity

€ Strain

P Load

" Poisson's ratio

t Thickness

a Depth of semi-elliptical surface flaw or semi-minor axis
of the ellipse ¥2/a2 + y2/c? =1

2¢C Effective width of semi-elliptical surface flaw

¢ Complete e1liptical integral of second kind having
modulus K defined.

K= (I-azlcz)l’2

Q Flaw shape parameter = @2 -0.212 (o/o < )2
(See Figure 7) y-s-

") Uniform tensile stress applied perpendicular to plane
of crack or peak cycle value thereof.

oy s Uniaxial tensile yield strength.

2C Total crack length of center crack panel.

My Magnification facter (see Figure 3).

A Constant
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1.0 INTRODUCTION

The very high degree of reliability required of aerospace pressure vessels
has resulted in the expenditure of considerable effort in developing analyt-
jcal and experimental procedures for definition and understanding of their
associated failure problems. Experience has shown that a realistic represen-
tation of failure origins is a semi-elliptical surface flaw. Accordingly.the
semi-elliptical surface flaw has been adopted as a model for development of
both analytical procedures and experimental data for describing the tank wall
failure process.

The initial work, both analytical and experimental, was directed at develop-
ing an understanding of the catastrophic (burst) failure problem. The cata-
strophic (burst) failure process is a consequence of the critical defect depth
being less than the wall thickness, thereby preciuding the development of a
leakage failure by stable crack growth. Initial studies used the stress
intensity factor for a semi-elliptical flaw in a finite thickness plate which
was proposed by Irwin {1)*. Irwin's original solution was for surface flaws
with depth to thickness ratios, a/t, of less than 0.5. Subsequent analytical
and experimental efforts (2 through 8) have provided "magnification factor”
coefficients which extend the usability by accounting for effects of stress-
free rear surface boundary conditions and for Timited plasticity about the
crack tip. These developments were incorporated inte a design methodology
{9} which provided a design basis for utilizing nondestructive inspection

and proof-testing methods to verify that the design Tife could be realized

in service operations.

Having recognized the intolerance of some materials to crack-like defects,
a gradual but marked change in design philosophy has occurred. The most
prominent feature of this change has been the development and selection of
materials which exhibit a high level of tolerance to crack-like dafects
inherent in raw material or resulting from manufacturing processes. A good
example of this was the selectien of 2219 aluminum, rather than a higher

*Numbers in parentheses refer to references at the end of the report.



strength aluminum alloy, for many of the space shuttle components. The use
of such flaw-tolerant materials has presented some unique problems. These
problems are a consequence of the defect size which will cause failure (burst)
during proof testing, being greater than the wall thickness. The procedures
developed for assuring the service lives of vessels produced from brittle
material (Reference 9) are no longer directiy applicable. Although the pro-
cedures for minimizing service failures are available for the "brittie" ves-
sels, the possibility of costly proof test failures and resultant schedule
problems was sufficient incentive to cause the selection of the more flaw
tolerant ailoy. Although the selection of flaw tolerant materials such as
2219-T87 aluminum could virtually eliminate the possibility of a catastrophic
failure during proof test or operation, deep flaws which survived the proof
test cycle could grow through the thickness during service causing Teakage
and thereby compromising mission objectives or possibly causing a total loss
of the mission.

An evaluation of the appiicability of the proof testing methodolegies to

thin walled vessels was undertaken by references 10 and 11. This program, a
follew-on to references 10 and 11, was directed towards developing a better
understanding of and the procedures for proof testing thin walled tanks. The
program has two major sections, the first directed at determining the crack
growth behavior of surface flaws during the application of a simulated proof
test cycle, and the second designed to evaluate the use of a proof test cycle
in assuring subsequent service life. The program consisted of an experi-
mental effort which emdloyed specimens fabricated from both 22719-T87 aluminum
and 6A1-4Y STA titanium base metal. A variety of flaw shapes were tested

at room temperature 295 K (70°F) and at 20 K (-423°F) for the aluminum and
exclusively at room temperature for the titanium. Thicknesses tested varied
from 0.64 mm {0.25 inch) to 4.77 mm (0.188 dinch) for the aluminum and 1.02 mm
(0.040 inech) to 3.18 mm (0.125 inch) for the titanium.

The follewing sections of the report present a brief review of related back-
ground data, definitions and terminology, a description of the materials and
experimental procedures, and a discussion of the results and a summary of the
significant conclusions. App]icabTe data from other studies are incorporated
inte the analysis of the results.



2.0 BACKGROUND

Significant progress had been made in developing procedures for handling the
shallow flaw problem when experimental work devoted to the deep flaw problem
was initiated in 1967. This work, published in Reference 2, involved static
and cyclic tests of thick and thin gages of material, using a variety of
different flaw shapes in order to bound the influence of flaw depth to thick-
ness ratio and flaw shape on the failure process. Two materials were tested
during the conduct of that program, 2219-T87 aluminum and 5A1-2.5 Sn titanium
in both base and weld metal form. The results were used to empirically
derive deep flaw magnification factors to be applied to Irwin's surface flaw
stress intensity solution. Instrumentation for determining wall penetration
prior to fracture was not available although it was suspected that such
behavior had occurred and influenced the results.

A subsequent experimental pregram (8) was undertaken to explore the static

and cyclic behavior for combinations of flaw depth, flaw shapes and thicknesses
through that range where failure mode changed from "catastrophic failure" to
leak-before-failure. Instrumentation was added to detect flaw breakthrough
(Teakage) prior to failure. The data from the program was used to establish
the empirical formula

t-a=0.10 (K“_:/crys)2 (1)

for determining ligament length at which the failure mode changes from frac-
ture to leakage-befere-fracture. Additionally, the results of that study
indicated that KIE values obtained from any of three available deep flaw
solutions (2, 3, 4) could be used to describe fracture stress/flaw size Toci
for a wide range of thicknesses, flaw shapes, alloys, and stress loads.
These ranges were:

a. maximum failing stresses of about 0.90 Uys

b. wminimum thickness of about 0.25 (KIE/ ) H

c. ligament Tength greater than about 0. 10 (K E/oys)
For ligaments less than this value,prier to failure leakage occurred. The
final fracture strength was dependent on flaw length and the appropriate
through-crack toughness.



The primary emphasis of these initial studies (2, 8) was on the fracture and
cyclic flaw growth behavior of aluminum and titanium base metal specimens.
These studies had established that significant surface flaw crack growth can
occur duiing loading and had also determined the range of applicability of the
available stress intensity solutions in determining the fracture stress/flaw
size Toci.

The mechanical properties of as-welded 2219 welds are significantly different
from the T87 base metal properties. The program reported in reference 10 was
conducted to evaluate the weldment flaw growth characteristics of both 2219-
T87 aluminum and 6A1-4V STA titanium weldments. Tests were conducted both at
room and cryogenic temperatures and on several thicknesses. KIE values (gross
stress levels less than yield) were obtained only on the thicker gage-lower
temperature combinations of the titanium specimens. Leakage occurred on
several of the titanium tests and substantiated the ligament restrictions
developed in reference 8. Validity of the ligament restriction could not be
evaluated on the aluminum weldment tests because the surface flaw toughness
could not be measured in the thicknesses of interest. As expected, fracture
prior to leakage was not observed except with small flaws which caused frac-
ture well in excess of the weld metal yield strength.

Cyclic tests on both proof loaded and non-proof loaded specimens were conducted
under the reference 10 study. Three major observations resulted from the
analysis of the cyciic test data:

a. Cyclic lives of proof tested specimens always equalled or exceeded
the Tives of unproofed specimens. Although significant growth often
occurred during the proof loading, the subsequent cyclic growth was
retarded due to the proof overload, and the resultant cyclic life was
not adversely affected by the initial proof cycle.

b. The cyclic Tives of the specimens increased with increasing initial
flaw shape ratio (a/2c). For specimens loaded to equal percentages
of their failure (leakage) load at proof, the stress intensity
associated with the subsequent cyclic Toading is less for the



rounder flaws; therefore, the growth rate will be less and their
subsequent cyclic life greater.

c. In tests of several dozen specimens which were proof tested to
incipient leakags, measurable subsequent cyclic life (at stresses
of 85 percent of the proof stress) was realized. Results from
static failure tests were used to determine the maximum proof stress
which would be applied without causing leakage. This result was
significant in that it indicated that safe 1ife can be assured by
proof testing of thin walled tankage fabricated from high toughness
materials.

Reference 11 was a comprehensive study of the stable flaw growth during load-
ing and post proof test cyclic lives of deep surface flaws in 2219-T87 aluminum,
both base and weld metal. The objective of this study was to determine proof
testing procedures which would guarantee a minimum service 1ife capability sub-
sequent to rroof test. Three gage thicknesses of both base and weld metal
specimens were tested at temperatures ranging from room temperature to 23 K
(-423°F). The post-proof test cyclic life capability of nearly 100 specimens,
all of which had been subjected to a proof test which would maximize the stable
proof test flaw growth, leaving the specimen in an incipient penetration mode,
were evaluated. The incipient penetration condition was established by crack
opening displacement gage instrumentation and prior static tests.. The major
conclusion of this study was that a proof test could be used to assure, not
absolutely but with a very high degree of confidence,a subsequent cyciic

life capability.

The key observations of the preceding discussion are:
o The failure stress-flaw size locus for surface flaw specimens can be
divided into three regions,
- Region I - inelastic range (o> 0.900y5ﬁ
- Region Il - elastic fracture
= Region II1 - leakage prior to fracture.



o A complete description of the failure Tocus in Region I is not yet
available; however, it appears that the failure locus lies along a
relatively straight 1ine extending from ultimate strength at zero

flaw size to the point at about 0.90 o

vs? where Region II begins.

0 Region II can be described using available surface flaw stress
intensity solutions {which account for a/t effects) up to the point
where the initial ligament (t-a) is less than about 0.10 {K )2
whereupon Region III begins.

>

IE/Gys

¢ Final fracture in Pegion III is preceded by leakage and can be
described by consideration of original surface flaw length and the
through-crack toughness, KCN’ of the material.

o Limited data available suggests that resistance curve techniques may
be a powerful tool for describing both the leakage and fracture type
failures of surface flaw specimens.

o Flaw growth "damage” occurring during proof testing appears to be
compensated for by subsequent retarded flaw growth rates.

o For equally critical (i.e. loaded to an equal percent of their
failure load) leng and short flaws surviving a given proof cycle,
the Tong flaw has the shortest subsequent cyclic life.

o A proof test to assure with a very high degree of reliability a
subsequent cyciic life of a thin-walled pressure vessel.

The above points had a very significant influence on the design of the experi-
mental program reported herein. The Region III leakage failure prediction
remains uncertain and is a major objective of the program reported herein.

The subject program was a follow-on to the reference 11 study and draws
heavily on the results of that program in the analysis of the data and the
expansien or medification of the above points. These discussions are pre-
sented in Section 5 of the report, "Discussion of Results.”



3.0 DEFINITIONS AND TERMINOLOGY

It has been established by numerous investigators that significant stable
crack growth can occur prior to catastrophic failure. Crack growth resist-
ance curves have been used in attempts to better understand this phenomenon
and establish the true instability points and associated fracture toughness
values for materials.

For structural application, the initial flaw size will be established either
by proof testing or non-destructive testing (NDT) procedures and the flaw
growth associated with the design service life requirements will be incor-
porated. The service life will be the time required to grow the initial
defect to the size which will produce failure at 1imit load. The limit load
stress in conjunction with the flaw size at the start of Timit load applica-
tion will estahlish the failure condition. Service failure is not limited
to the catastrophic fracture mode but can be leakage for some applications,
such as pressure vessels,

The objective of this study was the development of proof testing procedures
for thin walled pressure vessels and the investigation of the stable crack
growth behavior of both surface flaws and through cracks. The failure mode
for the pressure vessels (surface flaws) could be by leakage or fracture
whereas, the center crack pan~1 would fracture. The stress intensity concept
is used in developing the proof testing procedures and also in evaluation of
the stable flaw growth behavier. A list of symbols denotirg the stress
intensity synonymous with numerous events are listed below together with a
brief explanation.

KCN - The toughness calculated from equation 3 using the initial
crack Tength in conjunction with the maximum load. General
stable crack growth precedes failure, therefore, this is a

measure of the minimum stress intensity present at fajlure.

KC - The fracture toughness as determined by tests of center crack
panels using equation 3 in conjunction with the maximum load



and crack length (i.e. the crack length at the tangency
of the resistance and driving curve).

106 ° The stress intensity at the initiation of crack growth in center
crack panels. Caiculated using equation 3 in conjunction with
initial crack length and stress which initiated stable crack

growth determined by crack propagation gages.

KIi -  The stress intensity calculated from equation 2 using the initial
flaw dimensions and the maximum stress.

CR ~ The stress intensity calculated from equation 2 using the
initial flaw dimensions and the stress at failure either by

breakthrough or catastrophic failure.

KIE - Apparent fracture toughness as determined by test of surface
flaw specimens whose failure mode was fracture using maximum
stress and initial flaw dimensions in conjunction with equation 2.

The stress intensity concept is a powerful tool for analyzing the behavior of
flaws ; an actual stress intensity can only be calculated if the state of stress
and the flaw dimensions are known. The inability of NDT techniques to reliably
establish the size of pre-existing flaws necessitated the development of quan-
titative interpretations of proof testing procedures. The use of the stress
intensity concept in the determination of required proof to operating stress
ratio requires an assunption of initial flaw size. Since proof testing is
meant only to assure a minimum service life potential, the initial flaw size
assumed is the maximum which could exist without causing failure during

proof testing. The successful compietion of a proof test establishes the
maximum initial flaw size. For the pressure vessels whose failure mode at
preof is leakage, the post proof test flaw size is not known. Rather than
trying to establish the maximum flaw size after proof and use that as the start-
ing point for the crack growth during operational Toading, all of the cyclic
tests in this program were conducted after a simulated proof test was applied
and the original (prior to proof test) flaw dimensions were used in all of

the subsequent stress intensity calculations fer the surface flaw Specimens.



4.0 MATERIALS AND PROCEDURES

The materials and experimental procedures are described in this section. ASTM
standard mechanical property tests were conducted on the materials; resul(g

of these tests are discussed in Section 5.0. A detailed description of
material composition and heat treat procedures follow in Section 4.1. Details
of specimen preparation and experimental approaches are included in Section 4.2.

4.1 Materials

A1l of the specimens were fabricated from either 2219-787 aiuminum or 6A1-4V

STA titanium. The aluminum material was originally purchased for NASA CR-134679
(Effect of Thermal Profile on Cvclic Flaw Growth in Aluminum), and subsequently
used on NASA CR-135036 (Proof Test Criteria for Thin-Walled 2219 Aluminum Pres-
sure Vessel} and the subject program NAS3-19697 (Analysis and Test of Deep

Flaws in Thin Walled Vessels.) The sheet material 6.35 x 1219 x 2438 mm

(0.25 x 48 x 96 inch) was purchasad per Boeing Specification BMS7-105C (equiva-
lent to Military Specification MIL-A-8920A). The chemical composition of the

material as required by the specification and as measured for NASA CR-134679

is presented in Table 1.

The 6A1-4V titanium material was purchased in Sheet form 6.35 x 914 x 2134 mm
(0.25 x 36 x 84 inch) per Military Specification MIL-T-9046F, Type III, Con-
dition C (annealed condition). The chemical composition of the material as
required by the specification and as certified by the supplier (Reactive Metals,
Inc.) is presented in Table 7.

The 2219 aluminum was purchased in the T87 condition, the 6A1-4V titanium was
purchased in the annealed condition and heat treated to the STA condition.
The heat cycle selected for the titanium was identical to that empioyed in
NASA CR-134587, "Fracture Characteristics of Structura! Aerospace A]Iey Con-
taining Deep Surface Flaws":

a. Solution Treat at 1227K (1750°F) for 30 minutes

b. Water quench with 6 second maximum delay

c. Age at 769K (925°F) for 8 hours.



The quench cycle produced some distortion, most of which was eliminated by
aging the parts while they were clamped fiat. The remaining distortion was
eliminated by machining away excess material.

4.2 Procedures

Procedures used for specimen preparation and testing are described in this
section. The specimen preparaticn section (4.2.1) covers the details of flaw
preparation and specimen fabrication. Details applicable to the testing of
specimens are covered in Section 4.2.2, Test Procedures.

4.2.1 Specimen Preparation

A1l of the specimens were prepared using conventional machining procedures.

The detailed specimen configurations are presented in Figures 1 through 4.

All specimen blanks were removed from the parent sheet material so that load-
ing would be applied parallel to the long transverse direction of the material.

Fatigue crack starter siots were introduced into both the surface flawed and
center crack panel specimens by ejectric discharge machining. The electrodes
used in the electric discharge machining were fabricated from 1.5 mm {0.06
inch) thick Packanite sheet. The starter slots had a maximum of 30 degrees
included angie terminated by an 0.08 mm (0.003 inch) root radius. Fatigue
cracks were produced at the root of the starter notches by means of tension-
tension cyclic fatigue applied at 30 Hz,peak stresses of 69 MN/m2 (10 ksi) to
110 MN/m2 (16 ksi) were used to precrack the titanium center crack panels, and
a maximum stress range of 41 MN/m2 (6 ksi) t¢ ©9 MN/m2 (10 ksi) was used for
the aluminum center crack paneis. The precracking of the center crack panels
was monitored visually with the aid of a 10 power magnifier. The precracking
operation was terminated when the desired final crack length had been obtained.
Generally 20,000 to 50,000 cycles were sufficient to produce the desired
resuits. The surface flaw specimens were divided inte groups which had nomi-
nally the same flaw size. A1l of the specimens within a given group were pre-
cracked at the same stress level. For the titanium specimens the stress
Tevels ranged from 207 MN/m2 (30 ksi) to 276 MN/m2 (40 ksi) and for the

10



aluminum specimens the range of stress levels varied from 69 MN/m2 (10 ksi)
to 83 MN/m2 (12 ksi). The precracking operation was monitored visually with
the aid of a 30 power microscope. Generally 10,000 cycles were sufficient
to produce the desired precrack for the surface flawed specimens.

4.2.2 Testing

Three different types of tests were conducted during the program (static
fracture, load/unload, cyclic). Static fracture tests were performed on all
center crack panels and some surface flawed specimens. These tests consisted
of monotonically increasing the Joad until specimen fracture. A loading rate
sufficient to produce failure in 1 to 2 minutes was used for all of these
tests. The load/unload and cyclic tests were applied exclusively to the
surface flawed specimens. The load-unload tests consisted of monotonicalily
increasing the specimen load at a rate which would produce the desired load
in approximately one minute and then rapidly unloading the specimen. Cyclic
tests were conducted using either a sinusoidal or trapezoidal profile.

Cyclic tests conducted at 10 or 3 cpm employed the sinusoidal loading profile,
where the 1 cpm tests used a trapezoidal loading profile. The trapezoidal
loading profile was equally divided into four 15 second portions (i.e., 15
seconds to load, 15 seconds at load, 15 seconds to unload and 15 seconds at
zero load). The minimum Toad in all the cyclic tests was less than 5 percent
of the maximum value.

4.2.3 Environments

&11 of the testswere conducted at either room temperature or at liquid hydro-
gen temperature 20K (-423°F). For the liquid hydrogen temperature the speci-
mens were enclosed within a cryostat. The 1iquid hydrogen level within the
cryostat was monitored by means of 1iquid level sensors. Liquid sensors were
located periodically inside the cryostat and coupled to an automatic trigger-
ing system to assure maintenance of the desired Tiquid Tevel. This system

had been used to centrol the liquid hydrogen depth in the cryostat to within
25 mm (1 inch) of the desired level for reference 12. The entire test section
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. the specimen was submerged in the liquid hydrogen during testing. A
minimum soak time of 30 minutes was alleowed after filling the cryostat to
ensure that the specimen had stabilized at the desired test temperature.

4.2.4 Instrumentation

The center crack panels were instrumented to provide a continuous record of
crack opening dispiacement and crack length. An EDI {Electrical Displacement
Instrumentation) clip gage was used in monitoring the crack opening displace-
ment. The gage was either inserted directly into the flaw or attached to
brackets which were micro spot welded to the specimen as shown in Figure 5.
The EDI gage was connected to an X-Y plotter which produced plots of load
versus crack opening displacement. In addition to the load crack opening
displacement records, instrumentation for load-crack length determination

was also applied to the center crack parels. Crack propagation gages (CPG)
{Type TX040CPC03-003) consisting of 20 parallel filaments spaced 2.03 mm
{0.08 inch) apart in a 39.6 x 19.1 mm (1.56 x 0.75 inch) frame were used to
monitor the crack length. Crack propagation through a filament results in
the failure of that filament and an increase in the resistance of the gage.
The load-crack length relationship was thereby obtained by recording load
versus gage resistance on an X-Y pletter.

The surface flaw specimens were equipped with an EDI gage for monitoring
crack opening displacement ana pressure cups for detecting breakthrough. The
EDI gages were attached to the flaws in the manner described previously

(see Figure 5) and load-crack opening displacement records were obtained.
Additionally, the surface flawed specimens were instrumented with pressure
cups for determination of crack breakthrough. The pressure cup system {see
Figure 6) consisted of twe cups applied symmetrically on the specimen, one
directly over and one directly behind the flaw. The cup ever the flaw was
pressurized with either nitrogen or helium gas and the pressure in the rear
cup was monitored. Breakthrough'was denoted by an abrupt increase in
pressure in the rear cup. The rear cup pressure was plotted versus the
applied load on an X-Y plotter, thereby providing a permanent record fcr
determination of breakthrough load. For cryegenic tests the rear cup was
vented immediately prior tc testing to relieve any partial vacuum which might
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have been produced by the cool-down cycle. During fracture or load-unload
testing, both the crack opening displacement and rear cup pressure were
recorded versus load, however, for cyclic tests the crack opening displace-
ment was recorded on a strip chart recorder as was the rear cup pressure.

4.2.5 Flaw Size Determination

A1l of the flaw sizes presented in the tables were measured directly from the
fracture faces of the specimens. The measurements were made visually with
the aid of a 30 power microscope and poiarized light. A load sequencing
procedure designed to produce visible bands of growth for each load-unload

or cyclic loading was used throughout the experimental portion of the program.
The load sequencing procedure was successful in producing visible bands for
each Toading segment, therefore, the crick size measurements were made
directly from the fracture faces. The crack opening displacement records
were used as guidelines and provided further substantiation of the visual

measurements.

4.3 Stress Intensity Solutions

Surface Flawed Specimens

The surface flaw stress intensity values reported {H the tables were calculated
using the Irwin Surface Flaw Equation presented in reference 1, modified by

the deep flaw magnification term presented in Figure 58 of reference 2. The
resulting equation is:

Ky = 1.1 (n a/Q) /2 Mo (2)

See the 1ist of'Symbols for definition of the terms and Figures 7 and 8 for
values of § and MK'

Center Crack Panel Stress Intensity

The stress intensity values presented for the center crack panels were
calculated using the following formula:
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R (3)

See the 1ist of Symbols for definition of the terms and Figure 3 {from
reference 13) for values of Y.
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5.0 RESULTS AND DISCUSSION
5.1 Mechanical Property Tests

The tensile properties, of the 2219-T87 aluminum and 6A-4V STA titanium are
presented in Tatles 2 through 4. The aluminum alloy was tested at 295K
(72°F) and 20K (-423°F), the titanium alloy at 295K (72°F), only. The
effects of temperature on yield strength, ultimate strength, elongation and
Poisson's Ratio are presented in Figures 10 and 11. The uniaxial yield
strength values presented were calculated using the 0.2% offset method for
a 50.8 mm (2.0 inch) gage length.

Poisson's Ratio was determined from continuous strain gage recording of both
longitudinal (eL) and transverse strain (ET)' The elastic Poisson’'s ratios
were then calculated using the following formula:

where u is Poisson'< Ratio and P is the lead.
5.2 Center Crack Panel Tests

Resuits of all of the center crack panel tests are presented and discussed
in this section. The discussion is separated by alloy, the aluminum being
first followed by the titanium results.

5.2.1 2219-7T87 Aluminum Center Crack Panel Tests

Static fracture tests were conducted on the aluminum alloy panels at beth
room temperature and 20K (-423°F). A11 specimens were monotonically leaded
at a rate which produced failure in approximately 1 minute. The results
have been summarized and are presented in Tables 5 through 8. A1l of the
specimens were instrumentated with both crack opening displacement (COD) and
crack propagation gages (CPG).
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The relationship between initial crack length and gross area failure stress
are presented in Figures 12 and 13. Curves of constant toughness (KCN)
calculated from the initial crack length and maximum gross area stress have
been passed through the data. KCN values of 68 MN/m?'/2 (62 ksi vin ) and

86 MN/m3/2 (78 ksi /in ) correlate the data for the room temperature and

20K (-423°F) results, respectively. The data fall within 10 percent of the
K:N lines presented in Figures 12 and 13, except when the net section

failure stress exceeds 80% of yield. The net section stresses are calculated
on the basis of initial cracli Tength. The apparent reduction in KCN value

at the high stress levels (Unet > 0.80 oys) is normal for this type of
testing. Specimen thickness did not significantly infiuence the test results.
At room temperature the thinnest gage consistently failed at a slightly

lower stress than the thicker gages. This trend, however, was reversed for
the Tiquid hydrogen temperature tests. Buckling restraints were applied to
all of the thinner gage specimens to prevent local buckling at the crack tip
from significantly influencing the failure stresses. Although general
buckling can be easily prvevented, it is difficult to eliminate totally all
buckling at the crack tip. For specimens which are instrumented with CPG
gages the problem is compounded because the application of any force directly
on the gage could cause erroneous gage output. The panels were therefore
restrained in such a manner that generalized buckling would not occur, but
very localized buckling at the crack tip was possible. Buckling would tend
to reduce the apparent toughness of the material. Toughness is generally -
considered to increase with decreasing thickness because of the failure mode
change from plane strain te plane stress; the former producing flat fracture
faces while the latter is characterized by a shear type fracture face. For
the 2219-T87 aluminum, however, applying the criteria

t>2.5 (Km/aﬁ)2 (5)

for determining the required thickness to produce flat fracture conditions a
gage thickness in excess of 40 mm (1.6 inch) would be required to produce
flat fracture. Since the gages tested ranged from 0.64 to 4.77 mm (0.025 to
0.188 inches) the expe.ted failure mede would be a shear type for

all specimens. A review of the fracture faces of the specimen reveals a

16



predominance of shear, especially for the room temperature tests. Reference
11 tested 2219-T87 aluminum base metal center crack panels in thicknesses of
3.18, 6.35 and 9.53 mm (0.125, 0.250 and 0.375 inches). A KCN value of

68 MN/m/ 2 (62 ksi /in } correlated the data within a plus or minus 10%
scatter band. For room temperature tests of 2219-T87 aluminum base metal
3/2 {62 ksi /in ) can be used to
correlate the data for thicknesses up to 9.53 mm (0.375 inch} within a plus
or minus 10% scatter band.

center crack panels a KCN of 68 MN/m

Decreasing temperature from 295K (72°F) to 20K (-423°F) generally increases
the KCN of the 2219-T87 aluminum alloy. This was found to be the case for
the center cracked panels tested for this program. A limited number of tests
were conducted and half of those conducted failed at high.net section

3/2 (78 ksi /in ).
This increase of 25 percent over the room temperature K. value is an

CN
abnormaliy high increase in toughness. An increase in toughness of 10 percent

stresses. The remaining specimens exhibit a KCN of 86 MN/m

is more typical; however, due to the very limited number of tests conducted.
the high value is probably a conseguence of data scatter. If the KCN values
of the three specimens having the largest flaws are averaged with the KCN
values of reference 11 for specimens machined from the same lot of material
and tested at 20K (-423°F),a value of 83.0 MN/m>/% (75.6 ksi vin ) is
obtained. The five specimens, three from this program and two from reference
11, were all machined from the same lot of material to the same planform
configuration, thickness betn; the enly variable. Also, the initial flaw
lengths of the five specimens were all within 1 percent of each other. The
effect of thickness on KCN for these specimen: is presented in Figure 14.
Although the spread between the maximum and minimum values is only 27 percent,
it does appear that the thickness did have an influence on KCN since it is

the only variable. At room temperature the thickness did not significantly
influence the measured KCN value. The average room temperature KCN values,
calculated from the specimens that failed at net section stress below 80%

of yield, are presented in Figure 14. Examination of the fracture faces of
the specimens'revea1ed a shift in failure mode from shear te mixed mode

(both flat and shear) for the liquid hydrogen tests, but no change for the
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room temperature tests. Although the fracture faces of the thinnest liguid
hydrogen specimens were all shear, the thickest specimens exhibit a significant
amount of flat fracture, indicative of a mixed mode failure. The fracture
faces of the room temperature specimens were almost totally shear for the

range of thickness being considered (0.64 mm (0.025 inch) to 6.35 mm

{0.25 inch).

A1l of the center crack panels were instrumented with crack propagation gages,
the outputs of which have been used in constructing the plots of applied load
versus crack length presented in Figures 15 through 18. These results have
been used further to calculate the crack growth resistance curves presented
in Figures 19 through 23. The maximum crack length shown and the correspond-
ing load or stress intensity represents the minimum crack length at maximum
load. That is, there was not any discernible increasa in apptied load after
the reported crack length was obtained; the crack growth resistance curve

was therefore tangent to the stress intensity or driving curve at that point.
From Figures 19 through 23 the Ke values can be determined which will be

the end point of the resistance curves. The effect of thickness on KC is
presented in Figure 24, Kc is calculated using the maximum gross area

stress and the minimum crack length at maximum stress. Data taken from
reference 11 has also been included in Figure 23. At 20K (-423°F) thickness
did influence the measured Kc values, however there wasn't any influence of
thickness on the measured I(c values at room temperature. The effect of
temperature and thickness on measured Kc values is consistent with that

found on KCN values (Figure 14).

Plots of the stress at initiation of crack growth versus initial crack Tength
are presented in Figures 25 and 26. Initiation of crack growth was determined
from the CPG gages and was considered to be the point at which the first gage
wire broke. The gages were mounted on the panels such that the centerline of
the first wire was 2.03 mm (0.80 inch) from the end of the crack tip. The
initiation of crack growth therefore corresponds to a discernible increase in
crack Tength., A reasonable approximation of the stress at the initiation of
crack growth can bemadeif a KICG of 53 MN/mB/Z (48 ksi /in } and 58 MN/m3/2
(83 ksi vin ) are used for the room temperature and 20K (—423°F) test results,
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respectively. Although the room temperature K value for initiation of crack
growth is equal to the values measured in reference 11, the Z0K (-423°F)
value is somewhat higher. The thickness tested in this program was generally
less than in reference 11, therefore the increase in KICG at the initiation
of crack growth for the liquid hydrogen tests was probably a result of the
jncreased toughness of the thinner material gages. The stress intensity
values at which crack growth initiated was relatively constant for the range
of initial flaw lengths tested. Most of the specimens experienced crack
growth at net section stress levels below 80 percent of yield.

A plot of initial crack Tength versus critical crack length is presented in
Figure 27. Neither thickness nor test temperature significantly influenced
the relationship between the initial and final crack lengths. Knowing the
initial crack length,a reasonable approximation of the criticail crack length
can be calculated from

(ZC)Cr= 1.24 (ZCi) + B (6)

where
B = 14.7 mm (0.58 inch)

Equation 6 can alsc be used in conjunction with Equation 3 teo calculate
Kc directly. The resulting equation would be:

K, = Yor1.24 C; + B/ (7)

Y = determined from Figure 9 and

2(1.24) C_i + B

2¢/, = W (8)

A11 of the test data presented and the instrumentation records obtained
indicated that for 2219-T87 aluminum center crack panels crack growth
initiates at a stress intensity Tevel significently below critical and the
crack propagation continues at an increasingly higher velocity until fracture.
During the failure process the toad must be continually increased until the
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point at which the crack growth resistance curve becomes tangent to the
driving curve; thereafter a further increase in load is not required to
perpetuate failure.

The results of the 2219-T87 aluminum center crack panel tests can be
summarized as follows:

0 Over the range of thicknesses tested at room temperature the
measured KCN and K. values were insensitive to thickness.
{Figures 14 and 24.)

0 At liquid hydrogen temperature the range of thickness did influence
both the measured KCN and KC values. Both KCN and KC were found to
increase with decreasing thickness. (Figures 14 ‘and 24.)

o Faillurestresses can be predicted within 10% for specimens which fail
at net section stresses below 80 percent of yield if the appropriate
KCN value is considered. (Figures 12 and 13.)

0o All of the specimens experience significant crack grbwth prior to
failure. The failure process can be divided into two distinct
regions; the first requires an increase in load to create an increase
in crack length, the second region does not requirefany increase
in load to produce crack growth. The dividing point between the
regions is defined by the point at which the crack’ growth resistance
and driving curves become tangent.

o The stable crack growth experienced in the first region is insensitive
to both temperature and thickness, but is dependent on initial
crack length.

§.2.2. 6AT-4VSTA Titanium Center Crack Panel Tests

Static fracture tests were conducted on nine 6A1-4V §TA titanium center crack
panels at room temperature. The results of these tests have been summarized
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and are presented in Table 9. A plot of gross area failure stress versus
jnitial crack length is presented in Figure 28. A1l of the specimens failed
at net section stress significantly below 80 percent yield, therefore the
results were not influenced by yielding to the same extent as the aluminum
312 g0 mn/m3/? and 92 WH/m>’? (66 ksi Jin,
73 ksi /in and 84 ksi /in ) provide reasonable prediction of the failure
stesses for the 3.18 mm, 2.03 mn and 1.02 mm (0.125 in, 0.080 in., and 0.040
in.) thick specimens, respectively. Inspection of the fracture faces of

results. KCN values of 72 MN/m

the specimen shows the thinnest gage to have failed in shear, all other gages
had areas of fiat fracture. Using the 72 MN/mSI2 (66 ksi /in } toughness
obtained from the 3.18 mm (0.125 inch} thick specimen and the yield strength
reported in Table 4 a thickness of 12 mm {G.47 inch) was required for flat
fracture (minimum toughness) conditions {using Equation 5). Since the
thickness rangedfrom 10 to 30 percent of that required to produce fiat
fracture conditions, and the fracture faces indicate a transition from full
shear to mixed mode, the variation in measured KCN is as would be anticipated.

The results chtained from the crack propagation gages were summarized and
presented in Figure 29 as a plot of gross area stress versus crack length.
Further, the data was reduced to stress intensity versus crack length,
presented in Figure 30, The final crack tength for each specimen presented

in Figures 29 and 30 corresponded to the minimum crack Tength at maximum

load. That is, after obtaining the crack length presented, no further
increase in Joad was required to produce additienal crack propagation. The
final crack lengths presented were therefore synonymous with the crack

growth resistance and driving curves being tangent. K_ values can be
obtained directly from Figure 30. There was significant variability in the
measure K. values present in Figure 30. There was also considerabie variation
in the amounts of stable crack growth that occurred prior to fatlure. Figure
31 presents a summary of the titanium center crack panel KCN data. Although
the average KCN values obtained from the specimens were inversely proportional
to thickness there was overlap in KCN values between gage thickness. Rather
than consider the overall amount of flat fracture as compared to shear
fracture, the amount of flat fracture at the crack length corresponding to
the resistance and driving curves becoming tangent could lend some insight
into the variations in measured Kc' The ratio of shear to total area at
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the critical crack length was measured for the individual specimens and pre-
sented in Figure 32 in terms of measure K. versus percent shear fracture.

There is a very definite trend to the data; the greater the amount of shear the
greater the apparent Kc. A1l of the 1.01 mm (0.040 in.) chick specimens failed
ynder pure shear and correspondingly they had the highest Kc values. The other
gages failed with varying amounts of shear. The greatest sprezd in both Ke

and percent of shear fracture was for the 2.03 mm (0.080 in.) thick specimens.

Since the specimens were all cut from the same piece of material,the variation
in the results should not be relatable to chemistry. Prior to machining,all

of the specimen blanks were heat treated in their nominal plate thickness. The
solution treat and quench portion of the heat treatment cycle was performed
individually on each blank. A1l of the parts were heat treated per the BMS
specifications, however, there was a variation in individual quench times. A
maximum quench delay of 6 seconds is allowed by the BMS specification. Control-
ling mechanical properties is the major function of the heat treatment specifi-
cations. A maximum quench delay of 6 seconds is indicative of a material which
is quench critical (e.g. a material whose properties depend critically on the
quench step). Fracture properties may be even mora sensitive to quench delays
than are the mechanical properties. Reference 14 has shown that the microstruc-
ture can be made to vary stgnificantly through the thickness of 25 mm (1.0 in.)
BAT-4V titanium plate by heat treatment. The mast probable cause of the dispar-
ity in the KC values is the specimen to specimen variation in quench time.

This non-uniformity in fracture properties can be anticipated in large structures
fabricated from the subject alley since there will be significant variations

in quench times for structural elements of varying thickness. The impact of
variability on developing proof testing procedures for 6A1-4V titanium tank
pressure vessels is discussed in a Tater section of this report.

A plot of stress at the initiation of crack growth versus initial crack length
is presented in Figure 33. The crack propagation gages which were used in the
determination of crack tength were mounted with the first strand approximately
2.03 mm (0.080 inch) from the crack tip; the initiation of crack growth corres-
pends to the failure of the first wire of the gage. The stress intensity
required to initiate crack growth was inversely proportional to the specimen
thickness (Figure 34). The consistency of the resuits presented in Figure 33
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is somewhat surprising considering the variation in KCN and Kc values previously
discussed. Indeed the best ordered set of data, the 2.03 mm (0.080 inch) thick
specimen results, offered the greatest variation in the Ken and Kc calcula-
tions. KCN and Kc are both related to failure stress and failure stress for
these specimens was not directly dependent on the stress at which crack growth
initiated. The measured Kc values are dependent upon the amount of stable
crack growth the specimen can tolerate prior to becoming critical. A comparison
of initial and critical crack length for the titanium specimen is presented in
Figure 35 although there was a consistent relationship between initial and
critical crack lengths for the aluminum center crack panels, there was con-
siderable variability in the titanium results. The specimens which were capa-
ble of withstanding a greater percentage of crack growth exhibited higher Kc
values (see Figure 36).

The results of the room temperature 6A1-4V STA titanium center crack panel
tests can be summarized as follows:
o Key values based on maximum gross area stress and initial crack length
can be used to predict failure stresses. Decreasing thickness will
increase the KCN values required to cause failure.

o For the range of thicknesses and flaw sizes tested,the stress
intensity required to initiate crack growth was consistent within
a gage thickness but decreased as thickness increased.

o The amount of stable growth a specimen could tolerate was not relat-
able to its thickness. It was, however, influenced by the toughness

(Kc) of the specimen.

o There was a definite relationship between measured KC and the percent-
age of flat fracture at the critical crack length.

5.3 Surface Flaw Specimen Tests
The results of the surface flaw specimen tests are presented in this section.

Individual discussiens are presented for each alloy and test type conducted.
The two alloys tested were 2219-T87 aluminum and 6A1-4VY STA titenium, base
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metal only. Tests were conducted to determine the stable flaw growth charac-
teristics during loading, the parameters controlling thickness penetration
prior tc fracture and the post proof test cyclic life. The aluminum alloy
results are presented first.

5.3.1 2219-T87 Ajuminum Growth-on-Loading Tests

The results of the alumirum growth on lcading tests have been summarized and
are presented in Tables 10 through 21 and Figures 37 through 40. The growth
on loading tests were conducted on three different flaw shapes and thicknesses
at room temperature and on three thicknesses, but only one flaw shape at 20K
(-423°F).

The flaw sizes were selected so that the typical failure loads would corres-
pond to 90 percent of the material's minimum yield strength at the test temper-
ature. Ninety percent of yigld is a commonly used proof pressure for space-
craft pressure vessels, and therefore was selected as the test stress. The
flaw sizes were selected atter a review of available literature (8, 11) had
been made. The targeted failure stress was 310 MN/m2 {45 ksi) for the room
temperature tests and 407 MN/m2 (59 ksi) for the 1iquid hydrogen temperature
tests. Generally, the actual failure stresses were within 10 percent of the
targeted values; and, deviatisns from the selected flaw sizes were not made.
For all of the combinations of thickness-temperature-flaw size the failure

mode was leakage, except for the 4.77 mm (0.188 inch) a/2c = 0.15 specimens

at 20K (-423°F). The flaw shapes selected for the room tempercture testing
were a/2c = 0.15, 0.3C and 0.45 for the 4.77 and 1.91 mm (0.188 and 0.075 inch)
thickness specimens and a/2c = 0.05, 0.75 and 0.30 for the C.64 mm (0.025

imch) thick specimens. An a/2c of 0.05 was substituted for the 0.45 for the
thinnest gage because it was difficult to get a half-circle defect in this
gage. Only one flaw shape was scheduled at 20K {-423°F), therefore, an a/2c

= 0.15 was used because it proved to be the most severe case for the thicker
gages.

The test data is presented in terms of applied gross area stress versus flaw
depth in Figures 37 thorugh 40. Individual piots for each thickness-flaw
shape-temperature combination are presented. Initial flaw depths are der.icd
by open symbols and final flaw depths are represented by the closed symbols.
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A single open symbol is used when no discernible crack growth was evident on
the fracture face. The data is being presented in terms of flaw depth not

only because stress intensity is more dependent on crack depth than other crack
dimensions but also because the objective of this portion of the program is to
characterize the flaw growth behavior which can cause a pressure vessel con-
taining a surface flaw to reach an incipient wall penetration condition after
proof testing. Variations in flaw Tength were generally restricted to the
higher aspect ratio flaws and were less frequent than variation in crack depth.
A discussion of the variation in crack length will be presented later. Although
there is considerable scatter in the data, there are seversi -.bservations that
can be made which are worth noting.

The results of the room temperature 4.77 and 1.91 (0.188 and 0.075 inch} thick
specimens are discussed followed by the results of the 0.64 mm (0.025 inch)
thick room temperature tests. The discussion has been divided because of
testing problems encountered with the thinnest gage specimens. In all of the
thicker gage tests (Figures 36 and 37) flaw growth initiated at stress levels
significantly below the failure stress levels. After initiation, flaw growth
continued until breakthrough. The loading was applied at constant rate, and
the crack growth initiated and continued at increasing velocity to failure.

As the load approached the failure Toad, there was a rapid increase in the
crack tip valocity. There was no reason to believe, either from the data
presented in these figui=s or the crack opening displacement records presented
in Volume II of this report, that there was an instability associated with the
breakthrough phenomenon.

From Figure 41 (which is Figure 37 of reference 11) it can be seen that for a
given increment of load the associated increment of crack growth increases as
failure is approached. Since ali of the tests were conducted at a constant
loading rate,the crack tip velocity versus stress intensity relationship

would be as schematically presented in Figure 42. Prior to the crack tip
velocity becoming asymptotic to the stress intensity line,a failure by Tigament
penetration will occur. When the material thickness is sufficient to allow
the crack tip velocity to become asymptotic to the stress intensity line,a
catastrophic failure occurs. Regardless of failure mode, a significant amount
of stable flaw growth will be encountered prior to failure. Figure 43 pre-
sents the relationship between KcR and thickness for 2219-T87 aluminum base
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metal. KCR was calculated from equation 2 using the initial flaw size and

the gross area stress at either fracture or breakthrough. The figure demon-
strates that it is possible to have failure by leakage in the range of stress
intensity where failure by fracture is expected. The failure process appears
to be one of stable crack growth at an increasing velocity (for constant load-
ing} until the flaw has either penetrated the rear surface or attained suffi-
cient velocity to cause fracture.

To develop the resistance curves, a stress-fiaw size relationship must be
establishad. The data presented in Figures 37 and 338 was used to develop the
stress-flaw size relationship presented in Figure 44, Resistance curves have
been derived from the data presented in Figure 44 and are presented in Figures
45 and 46. Equation 2 was used in calculating the stress intensity values;
the deep flaw magnification term presented in Figure 8 was truncated at an a/t
of 0.90. Although there are several deep flaw magnification factors available
(References 2, 3, and 4) which adeguately correlate the data from specimens
which failed at elastic stress levels and had flaws which were less than 80
percent deep, the data being considered here does not fall in this range of
flaw depths. The shallowest initial flaws are 80 percent deep and all of the
final flaw depths are equal to the specimen thickness.

It has been established (6, 10, 11) that plastic deformation extending com-
pletely through the ligament occurs prior to failure of deep surface flaws.
For the cases being considered, the Tigament was plastically deformed during
the failure process; therefore, perhaps an elastic deep flaw magnification
term should not be included in the calculation of the stress intonsity factor.
In Figures 47 and 48, the resistance curves are again presented; however,

the stress intansity calculations did not include the deep flaw magnificatioen
corection (MK) presented in Figure 8. Although the initial flaw depth to
thickness ratios (a/t's) did vary slightly with flaw shape, for a given thick-
ness, all of the failures are by leakage; therefor2, the final a/t in all
cases was equal to one. At failure (i.e., leakage) the variations in the MK
correction term was a consequence ef the flaw shape variations only. It is
apparent from Figures 45 and 46 that the modified Irwin surface flaw stress
intensity equation (i.e., Eguation 2} was inadequate for correlating the data.
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The elimination of the deep flaw magnification term in the stress intensity
formulation does heip in the correlation of the data as can be seen in Figures
47 and 48. Although the data correlation was greatly improved, there is still
a systematic effect of flaw shape on the calculated critical stress intensity.
Additionally, the gage thickness significantly influences the critical stress
intensity values obtained, the critical values obtained for the 1.91 mm (0.075
inch) thick specimens are typically 65 percent of the values obtained for the
4.77 mm {0.188 inch) thick specimen of the same flaw shape (a/2c). It has been
established (2, 8) that Equation 2 can be used to correlate failure data when
the specimen thickness is sufficient to produce a failure by fracture. From
Figure 43 it is apparent that the minimum required thickness is somewhat depend-
ent upon flaw shape. Equation 2, with any of a number of MK correction terms
(2, 3, 4), can be used to correiate fracture data when specimens are sufficientiy
thick. The problem being considered here, i.e., failure by leakage case, is
significantly more complex and Equation 2 is not satisfactory for correlating
the failure data. Equation 2 does not account for the influence of thickness
and it overcompensates for the effect of flaw shape. The major portion of the
overcompensation for flaw shape is in the MK term; however, even the exclusion
of this term still leaves a systematic influence of flaw shape on the results.
Plotting the data in terms of remaining ligament (t-a) versus thickness (Figure
49), or flaw depth te thickness ratio (a/t) versus flaw shape (a/2c (Figure 50)
only verifies the significance of flaw shape on the breakthrough failure mode.
The remaining 1igament (t-2) (Figure 49) which caused failure was dependent
upon both thickness and flaw shape, as well as stress; therefore, it does not
simplify the problem to consider this parameter alone. For a given flaw shape
and failure stress, the a/t which caused failure by leakage (Figure 50) was
somewhat insensitive to variations in thickness. This is in agreement with
reference 11 where it was observed that for a given flaw shape, the percentage
increase in flaw depth prior te failure was independent of thickness, but
dependent upon flaw shape.

The extent of flaw growth that can be encountered prior to failure is presented
in Figures 41, 52 and 53 1in terms of KIi/KcR versys percent increase in flaw
depth. I{Ii and KcR were calculated using Equation 2 in conjunction with the
max i mum applied_stress and the initial flaw size. The KCR used for the calcy-
lations were the average values of all the failure p.ints for each thickness--
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flaw shape--temperature combination. Either breakthrough or fracture was con-
sidered to be a failure. The percent increase in flaw sizes were calculated
from the initial flaw depth and the extent of flaw growth that occurred during
loading. The percent increase in flaw depth was dependent on initial flaw
shape only and was independent of temperature or gage thickness. This is as
would be expected from reference 11 and Figure 47. From the figures, it is
apparent that an increase in flaw depth of 10 percent or more will only occur
very near failure. Presernting the data in terms of KIi/KcR is a representation
of the proximity of failure which minimizes the effects of MK’ a8 parameter
which is of questionable value for these calculations. Since the initial flaw
sizes were nearly identical for any given thickness and flaw shape teste. the
MK terms in both the numerator and denominator of the KIk/KcR calculation are
self-canceliling. The KIi/KcR terms are very nearly equal to the Gi/UCR but
were selected for correlating the data because K accounts for the minor differ-
ences in initial flaw size.

A plot of KIi/KcR versus percent increase in flaw depth is presented in Figure
54 for the thinnest gage aluminum specimens tested (0.64 mm (0.025 inch)). The
results from these tests were similar in all cases to the thicker specimen
results. The data scatter was slightly more severe due to the problems associ-
ated with introducing flaws which were within 0.13 mm (0.005 inch) of the rear
surface. For aill of the gages tested, there was considerable scatter in the
results. The lack of specimen te specimen repeatability, however, was not
surprising for this type of testing. The emphasis of this portion of the pro-
gram was to determine the parameters controiling stable flaw growth for speci-
mens subjected {o incipient failure. Micro delaminations, grain boundary posi-
tions, local microstructural variations could all have had a significant impact
on the results. None of the previously mentioned parameters would be revealed
when the fracture faces were viewed with a microscope, nor could anything be
done to circumvent them during testing. Considerable specimen to specimen
scatter was therefore inherent in this type of testing and the degree of
scatter could be expected to increase as test gages decrease. For the 0.64 mm
(0.025 inch) thick specimen, the only flaw shapes which experiericed flaw growth
prior to failure were the a/2c = 0.05 and 0.15. The behavior of the thinnest
gage specimens were similar in all respects to the heavier gages.
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The specimen thickness had a significant influence on the stress intensity at
which stable flaw growth initiated. From the data developed in reference 11,
it appears that stable flaw growth initiated at stress intensity factors
approximately 70 percent of the critical value. The stress intensity factor
at 70 percent of critical for the thickest specimen (of reference 11) was
greater than the maximum stress intensity factor which can be obtained in the
thinnest specimen. Therefore, if the specimen thickness did not influence the
flaw growth during loading behavior, it would be impossible to have a failure
by leakage in the thinnest gage specimen.

The most significant observations made so far in the discussion of the stable
crack growth during loading phenomenon can be summarized as:

o Crack growth during loading is a stable process which will only
occur under increasing load.

o The critical stress intensity at breakthrough is dependent upon
specimen thickness and flaw shape.

o Inclusion of the deep flaw magnification term of reference 2 in the
stress intensity formula results in a greater variation in calcu-
Tated critical stress intensity at breakthrough, than if it is
excluded in the calculation.

o For a given flaw shape, the initial flaw depth to thickness ratio
which will cause failure by leakage is independent of specimen
thickness.

o The stress intensity at which stable crack growth initiates during
loading is dependent upon specimen thickness and initial flaw shape.

o The flaw shape parameter Q in the stress intensity formula cver-

compensates for the effect of flaw shape on the critical stress
intensity for breakthrough.
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0 The crack growth resistance curves do not become tangent to the
stress intensity curves prior to the flaw penetrating the thickness.

For thick specimens whose failure mode is fracture, it has been demonstrated
that Equation 2., with any of several (2, 3, 4) deep flaw magnification fac-
tors, can be used to correlate the data. For these cases, the plastic zones
are small with relation to remaining ligaments and the Q and MK terms
adequately account for the effects of flaw shape and a/t. For the case of
failure by breakthrough, there is significant plastic deformation and the
parameters of Equation 2 are inadequate. Additionally, specimen thickness
has a significant influence on the stress intensity at breakthrough and
initiation of crack growth.

An empirical modification of Fquation 2 could be accomplished which would
correlate the breakthrough data. Deletion of the MK term from the equation
helps to reduce the data scatter (see Figures 45 through 48); therefore, it
would be dropped. Exclusion of the MK term does not totally alleviate the

data scatter within a given thickness. Therefore, a modification of the (

term would be required to further reduce the scatter within a thickness. The
influence of thickness must now be accounted for by introduction of a muitipli-
cation term which wouid be empirically derived. The final formula would have
the form:

Ky =Co va F (a/2c) G (t) (9)
where F{a/2c) and G{t) are empirically derived correction factors
where KB.T. = Stress Intensity at Breakthrough
C = C(Constant
a = Flaw depth
F{a/2c) = Flaw shapé parameter (empirically derived)

G(t) = Empirical factor to account for thickness

The F(a/2c) term would be somewhat less sensitive to variations in flaw shape
than the Q term presented in Figure 7. G(t) would account for thickness and
would increase as tnicknrss decreases. It might also be necessary to make
G(t) a function of flaw shape if all the data were to be correlated within
generally acceptable bounds. The final equation would merely be a reiteration
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of the data and its usefulness would be restricted to the parameters tested.
The interface of the solution for failure by breakthrough and the solution for
failure by fracture (Equation 2) would be cumbersome.

5.3.2 6A1-4V STA Titanium Growth-on-Loading Tests

The results of the titanium growth on loading tests have been summarized and
are presented in Tabies 22 through 30 and Figures 55, 56 and 57. A1l of the
titanium tests were conducted at room temperature on three thicknesses of
material with three different flaw shapes per thickness.

The initial flaw sizes for the titanium specimens were selected to cause fajilure
at 90 percent of the design allowable yield strength of the material. The
Boeing Design Manual 1ists a 1020 MN/m2 (148 ksi) "B" allowable yield for
6A1-4Y STA titanium, therefore, the target failure stress was selected to bhe
90 percent of this vaiue (918 MN/m2 (133 ksi)}. The flaw sizes selected were
based on a data search of 6A1-4V STA titanium fracture properties. Generally,
the failure stresses obtained were below the targeted failure stress. Although
the titanium test program consisted of 33 surface flaw tests, there were 9
different combinations of specimen thickness and flaw shape. A maximum of &
specimens were allocated per flaw shape-gage combination, thus, it was not
possible to deviate from the pre-selected flaw sizes without severely limiting
the number of specimens available for investigating each condition. Addition-
ally, there was considerable variations in failure stress for seemingly iden-
tical specimens. The same specimen configuration was used for both the
titanjum center crack and surface flawed specimens. The variation in failure
stress for the surface flawed specimen was synonymous with the variations in
toughness of the center cracked panels discussed in Section 4.2.2. The speci-
men-to-specimen variation in toughness experienced in both the surface flaw
and center crack results is prebably typical of location variations in pres-
sure vessels made of 6A1-4V STA titanium. The only variable te which the
toughness variation can be attributed was gquench delay during heat treatment;
a variable which will most certainly be encountered in the heat treatment of
even moderate sized titanium structure. '
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A better understanding of the data presented in Figures 55 through 57 and
Tables 22 through 30 can be obtained if the crack opening displacement records
for the individual specimens are considered. The crack opening displacement
records have been reproduced on Figures 58 through 66. The records have been
divided in such a manner that all the records for a given thickness and flaw
shape are presented on the same figure. It is apparent from the crack opening
displacement records that some of the specimens were at an incipient failure
condition when unloading occurred. When the crack opening displacement records
are considered, it is apparent that those specimens which experienced a signi-
ficant amount of flaw growth at a stress level significantly below that at which
similar specimens failed did so because the toughness of that particular speci-
men was lower and it was in an incipient failure mode when unloading occurred.
Perhaps, a better characterization of the stable crack growth during loading
behavior of the alloy can be obtained 1f a comparison is made between the flaw
growth and proximity of failure at unloading.

The crack opening displacement records presented in Figures 58 through 66 were
used to estimate the proximity of failure when unloading occurred. The esti-
mated load which would have caused failure was divided into the maximum load
and considered to be KIi/KcR' Unlike the aluminum results where there was

not a significant variation in specimen-to-specimen toughness and an average
KcR was used for each gage-flaw shape-temperature ceombination for the titanium,
each specimen was treated individualiy. The percentage flaw growth was deter-
mined for each specimen (i.e., the stable crack growth during Toading compared
to the initial flaw size) and is compared with its KIi/KcR value in Figures

67, 68, and 63. As with the aluminum data, the growth on loading was a uniform
process initiating at a stress intensiiy significantly below critical and
continuing until failure had occurred. The crack tip velecity increased as
failure approached, the Toading rate was constant; however, there was no

point of instability. The lack of an instability point was well demon-

strated by the crack opening displacement records of specimens 2TR14-1 and
2TR81-2 (Figures 58 and 59). Specimen 2TR14-1 experienced a 22.7 percent
increase in flaw depth during the loading and unleading procedure. From the
crack opening displacement records it appears a portion of the crack grewth
occurred when the applied loading was being decreased. Had the Toad remained
constant, no further increase would have been required to cause failure (of
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specimen 2TR14-1) certainly; if the failure process was an instability process,
unloading without failure would have been impossible. Specimen 2TR81-2
experienced a 32 percent increase of flaw depth during the loading and unload-
ing process, a portion of which aiso apparently occurred during decreasing
load. The amount of crack growth, if any, that occurred during decreasing load
for these two specimens only occurred during the very initial reduction in
loading. Since crack growth apparently occurred during decreasing and peak
toad, it could be inferred that the loading rate could influence failure load.
Crack growth during either constant or decreasing load will only occur, however,
at loads very nearly the faiiure point. Therefore, variations in loading rates
will not produce any discernible change in failure stress.

The plots of KIi/KcR versus percent increase in_f]aw depth presented in
figures 67, 68 and 69 are very similar to the aluminum curve presented in pre-
vious figures. As with the aluminum resulits, the crack growth during loading
process appears to have been a stable process from initiation to failure. The
crack grew at an increasing velocity until failure occurred either by break-
through or fracture. For specimens of sufficient thickness, the crack tip
velocity was of sufficient magnitude that breakthrough and fracture occur
simultaneously. A minor variation in toughness can be sufficient to produce

a leakage failure rather than a fracture-type failure. An exampie of this is
given in Figure 57. Two of the 1.02 mm (0.040 inch) thick titanium specimens
having an a/2c = 0.15 failed by fracture, while one failed by breakthrough.
The resistance curve for these specimens can be determined from an assumed flaw
growth during loading behavior. For the two fracture-type failures, the assumed
flaw growth behavior is given in Figure 70. For the breakthrough failure, the
KIichR versus percent increase in flaw depth behavior presented in Figure 67
was used to calculate flaw depths at various stresses approaching critical.
The assumed relationship is given in Figure 70. As with the aluminum data,
the resistance and stress intensity curves were calculated, both with and
without the deep flaw magnification term presented in Figure 8. The results
of these calculations are presented in Figures 71 and 72. Independent of
whether the deep flaw magnification term was used or not, it is interesting

to note that the breakthrough failure occurred at a lower stress intensity
than the fracturetype failure. Flaw growth also initiated at a Tower stress
intensity for the breakthrough failure than for the fracture-type failures.
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The breakthrough specimen was apparently less resistant to crack growth due
to loading, thereby allowing the flaw to grow through the thickness before
the crack tip velocity was sufficient to cause a simultaneous breakthrough
and fracture. Although the "fracture" specimens could withstand a higher
stress intensity without failing, their increased toughness did not produce

a leakage failure. The author has observed fracture tests of surface fiaw
specimens of other alloys which produced similar results. One specimen will
fracture at a higher stress intensity than another, but the crack opening
displacement record of the tougher specimen will be linear to fracture, whereas
the record of the other one will indicate significant crack growth prior to
fracture. Therefore, the fracture toughness of a material is not necessarily
indicative of the amount of stable crack growth the specimen can experience
during loading.

Althoygh flaw growth behavior could be assumed for the other titanium speci-
mens and resistance curves generated, any trends in the data would be indis-
tinguishable because of the specimen-to-specimen variation in toughness. The
more significant points pertinent to the stable crack growth due to loading
behavior of the titanium specimen are summarized below:
o Crack growth during loading is a stable process occurring primarily
under increasing load.

o Crack growth can occur at constant load and even during the initial
relaxation of loading, but only at lToad Tevels extremely close to
critical.

o Minor variations in Quench-Delay Times can produce significant
variations in the critical stress intensity.

5.3.3 Effect of Growth-on-Loading on Crack Length
Thus far, the discussion has been Timited to the extent of crack growth
experienced in the crack depth direction during leading. The primary emphasis

has been placed on the crack depth growth because it controls breakthrough and
is a primary variable in the stress intensity equation. The crack length
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as measured at the specimen surface did not vary in any of the specimens

during the growth-on-loading tests. Where an increase in crack length occurred,
it was at some depth, not at the surface. In all cases the crack lengths pre-
sented in the tables are the maximum Tateral crack dimension; they are not
necessarily the crack length at the surface. The manner in which the various
flaw shapes grew is illustrated in Figure 73. Some typical examples of the
behavior are presented in Figure 74 for the aluminum specimen and Figure 75

for the titanium specimens.

The only aluminum specimens which experienced an increase in flaw length prior
to failure were the 4.77 mm (0.188 inch) thick specimens having initial a/2c's
of 0.30 and 0.45. None of the other aluminum specimens experienced any lateral
flaw growth prior to failure. A1l of the specimens which experienced increases
in crack length in excess of 5 percent did so only when failure was imminent.

A plot of KIi/Kcr versus percent increase in crack length is presented in
Figure 76. The results presented in Figure 76 are very comparable to the
results reported in reference 11. Reference 11 tested the same alloy and

flaw shapes in thicknesses from 3.18 mm (0.125 inch) to 9.53 mm (0.375 inch)
and reported lengthwise crack growth in all thicknesses tested. The magnitudes
of the crack growth ocbserved are the same between the reference and this pro-
gram. Considering the results of the two programs, the following conclusion
can be made pertinent te lateral crack growth durina loading in 2219-T87 alumi-
num base metal.

o Lateral crack growth can be experienced during loading but only at
Toad levels in excess of 70 percent of critical.

0 Lateral crack growth will be most predominant with round flaws,
i.e, a/2c >0.30.

o Lateral crack growth will be most prominent in gages in excess of
1.91 mm (0.075 inch). The data available suggests that lateral
crack growth will not occur in gages less than 1.91 mm {0.075 inch).

0 lateral crack growth will not occur at the surface, but rather at some

depth. The intersection of the crack front and the surface will not
vary during Joading.
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None of the titanium specimens having initial a/2c's of 0.15 or 0.05 experi-
enced any iateral crack growthprior to failure, Lateral flaw growth was
experienced in the 2.03 and 1.02 mm {0.080 and 0.040 inch) thick specimens
having an initial a/2c of 0.30. For the specimens having an initial a/2c of
0.45, lateral flaw growth occurred in both the gages tested (3.18 and 2.03 mm
{(0.125 and 0.080 inch)). As with the aluminum specimen, lateral crack growth
did not occur at the surface but rather at some depth. Even for the cases where
very significant growth occurred, the surface dimension remscined constant. The
percent increase in flaw length of the titanium specimens was significantly
greater than aluminum results (see Figures 76 and 77). The magnitude of the
increases in flaw length sugges’s that the failure of the titanium specimen
may be predominately controllied by the lateral crack growth rather than depth-
wise crack growth. 1If lateral crack growth does indeed exhibit a significant
infiuence on the failure precess, it would be a result of the material being
significantly more resistant to crack growth in the depth than in the lateral
direction. The results of the center crack panel tests, which were a measure
of the lateral toughnass of the material, however, yielded KCN values which
were higher than the KIE measured for the surface flaw specimens. There is
insufficient data to determine whether or not the lateral crack growth is the
controlling parameter in the failure process; however, the data does suggest
that lateral crack growth has a significant impact on the failure process for
specimens which have relatively round fiaws {a/2c >0.30). The more signifi-
cant facts pertinent to lengthwise crack growth during loading for both alloys
can be summarized as:

o Lateral crack growth will only eccur for initial a/2c >0.15.

o Lateral crack growth will only occur at load levels approaching
failure.

o Very pronounced crack growth can occur but only when failure is imminent.

o Lateral crack growth will rot occur at the surface, but rather at
some interier point.
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5.3.4 Summary of Growth-on-Loading Tests

Individual summaries of the aluminum and titanium results have been presented
in Sections 5.3.7 and 5.3.2, respectively. The following is a summary of

the observations which were common to both sets of data. The test results
presented in reference 11 have also been incorporated in this summary.

o Significant stable crack growth can occur under increasing load.
Significant specimen-to-specimen variation in the extent of crack
growth obtained can be expected for seemingly identical specimens
tested under carefully controlled laboratory conditions.

o Low aspect ratio {a/2c) flaws will experience more depthwise flaw
growth, on a percentage basis, than high aspcct ratic flaws.

0 High aspect ratio flaws will experience more lengthwise flaw growth,
on a percentage basis, than low aspect ratio flaws.

o It appears possible to experience crack growth at constant load and
initially decreasing load in 6A1-4Y STA titanium specimens but only
when the maximum applied load was nearly equal to the failure load.

0 The extent of fiaw growth which will occur, either depthwise or
lengthwise, is dependent upon initial flaw shape.

o For a 2219-T87 aluminum specimen, lengthwise flaw growth, prior to
failure, will only occur in gage thicknesses in excess of 1.91 mm
{0.075 inch).

5.4 Static Fracture Toughness Tests

It was not possible to obtain fracture toughness values from any of the room
temperature aluminum surface flaw specimen results because the failure mode was
Teakage. Several of the titanium specimens, however, failed by fracture; there-
fore, fracture toughness values were obtained for these specimens. The frac-
ture toughness values obtained have been summarized and are presented in
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Table 31 and Figure 78. The average toughness value obtained from the seven
specimens was 58 My /mo/ 2 (53 ksivinch). There was considerable variability

in the KIE values obtained. The variability in results is not reilatable to
either flaw shape or thickness. Like the center crack results, the varia-
bility in the results are most probably a result of variation in quench time

of the individual specimen blanks. Unlike the center crack results, there

was no systematic increase in toughness associated with a decrease in thickness.

5.5 Single Cycle Penetration Criteria Tests

The results of the single cycle peretration tests are presented in this
section. Thase tests were conducted to determine the parameters controliing
failure by Teakage. The geometric variables examined for each alloy were
flaw shape and specimen thickness. Al1 of the tests of a given alloy were
conducted at approximately the same stress; therefore, failure stress was
not a variable investigated. The discussion of the results is initially
divided by ailoy and a final discussion &«f commonalities is offered.

5.5.1 2219-T87 Aluminum Single Cycle Penetration Criteria Tests

Presently, two methods for predicting failure mode are considered. The first
was presented in reference 8 and the second in reference 11. Both of these
methods were empirically derived at leastpartially from 2219-T87 aluminum
test results. The reference 8 procedure assumes that the remaining ligament
which separates failure by leakage from failure by fracture can be calculated
using the following formula:

t - a=0.10(K./0,.)° (13
IE 3
The second, or reference 11, procedure is more Tengthy and can be used to
determine the failure mode for a selected failure stress. A comparison of

the predicted failure mode and the actual failure modes obtained during the
course of this program is presented in Figure 79.
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The failure mode for all of the aluminum tests, with the exception of the
4,77 mm {0.188 inch) thick specimen tested in liquid hydrogen, was ieakage.
The first method (reference 8) predicted all of the failure modes correctiy.
The actual remaining Tigaments were generally significantly less than the
predicted transition remaining ligament. The reference 11 or Method II pro-
cedure also accurately pradicted all of the failure modes. From the results

r

presented here, it appears t % either procedure can be used to satisfactorily

predict failure mode.
5.5.2 gA1-4y STA Titanium Single Cycle Penetration Criteria Tests

The actual failure mode of the titanium surface flaw specimen can also be
compared to the predicted mode. Both methods of predicting faiiure mode,
however, require the Kig of the material to be known. Unlike the aluminum
results where K[g was known, there appeared to be a specimen-to-specimen
variation in the titanium tests as a result of the heat treatment of the
specimen blanks. The maximum and minimum Kip values presented in Table 31
and Figure 73 have been used to determine the range of remaining ligaments
which separate failure by leakage from fracture. Using the reference 8 or
Method I procedure, the comparison of predicted and actual failure modes is
presented in Figure 80. If the maximum KIE value is considered for the pre-
diction, the actual and predicted failure modes are in agreement with one
except.on. Considering the specimen-to-specimen variation in toughness and
flaw growth during loading behavior, the one erroneous prediction was not
surprising. Generally, this procedure provided accurate predictions of the
failure modes.

The basic premise of the second failure mode prediction method (reference 1}
js that for a given material-flaw shape combination, there is a maximum
amount the flaw can grow stably prior to failure. Further, the maximum
amount of growth is a percentage of the initial flaw depth. Therefore, for

a given elastic failure stress, it is possible to determine the failure mode
if the critical stress intensity (KIE) is known. The waximum size flaw which
would cause Tracture rather than breakthrough can be calculated as follows:

dax t - Aa (10)
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where Aa = stable growth during Joad which will be a certain percentage of
the material thickness depending on initial flaw shape (see Figures 67 through
69). '

If, I.QSGMK amax/Q> KIE’ fracture will occur.

If, 1.95 MK \/amax/Q< KIE’ fracture cannot occur,

therefore, a deeper flaw will be required to produce a failure at the selected
stress. Since the remaining ligament for a larger flaw will be less than the
stable growth which can be encountered, the failure mode will be by Teakage.
For the titanium surface flaw specimens tested here, it appears the maximum
rercentage increases in flaw depth which can be encountered prior to failure
are 35, 35, 25 and 25 for a/2c's of 0.05, 0.15, 0.30 ard 0.45, respectively.
Therefore, all of the specimens having flaws with a/2c of 0.05 and 0.15 should
have failed hy breakthrough if their initial a/t was Q.74 or greater, and all
of the specimens having a/2c's of 0.30 and 0.45 should have failed by break-
through if their initial a/t was 0.80 or greater. A1l of the specimens failed
at elastic stress Tevels, therefore, a comparison of the actual and predicted
failure modes can he made using the reference 11 procedure (see figure 81).

In general, the predicted and actual failure modes are in agreement, the

three erroneous predictions are close to the predicted transition 7ine.

5.5.3 Summary of Single Cycle Penetration Test Results

There was insufficient data to conclusively prove or disprove the validity

of either of the two failure mode prediction criteria. Both methods accurately
predicted all the aluminum results and produced satisfactory predictions for

the titanium results. Considering the variatiens in toughness encountered in
the titanium specimens, some errars in predicted failure mode couid be expected.

The first criteria is useful in predicting failure mode if the flaw depth and
thickness is known. The procedure can then be used to predict failure mode

when failure occurs and is not influenced by fiaw shape or stress. The second
procedure can be used to predict the failure mode for a selected failure stress.,
This procedure considers the effects of flaw shape and is usefy] in determining
the potential failure mode at a selected proof stress level.
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5.6 Surface Flawed Specimen Cyclic Test Results

The results of the surface flawed specimen cyclic tests are presented and
discussed in this section. The ir*ti=1 discussion is divided by ailoy fol-
lowed by a review of commonaiities in the results.

5.6.1 2219-T87 Aluminum Surface Flawed Specimen Cyclic Tests

Cyclic tests were conducted at both room temperature and 20K (-4230F) at
cyclic frequencies between 1 and 10 cpm. The cyclic tests were generally
terminated at failure, either breakthrough or fracture; however, some tests
were terminated prior to failure. The results of the tests have been tabu-
Jated and are presented in Tables i0 through 21. The results are also
presented in Figures 82 and 83 in terms of KIi/KCr versus cycles to failure;

Equation 2 was used in the calculation of K. For the K;. calculation, the

initial (prior to simulated proof test) flaw size was uiéd in conjunction

with the cyclic stress Tevel. The Kgp's ¢ad in the calculation were the
average critical stress intensities for each individual combination of tem-
perature, a/2¢ and thickness. The KIi/Kcr ratios are directly comparable to
the ratio of operating to proof stress (Uop/cproof). Figures 82 and 83 can
therefore by used directly to determine the ratio of operating to proof stress

which is required to assure a minimum service 1ife requirement.

The curves of Ki/K.,. versus cycles to failure from reference 15 have been
plotted on the curves. These curves were "best-fit", rather than "lower
bound" curves generated from tests of specimens varying in thickness from
10.2 to 37.8 mm {0.40 to 1.25 inch). All of the test data presented in
reference 15 were for cyclic tests with no prior overload whose failure mode
was fracture. The room temperature data is evenly distributed about the
reference curve except for the longest flaw {a/2c-0.05) thinnest gage

[0.635 mm (0.025 inch)] data, which all fall to the left of the curve. The
limited data from the liquid hydrogen temperature tests ali fall very close
to the reference curve. Superficially it may appear the remeining flaw growth
1ife should be a minimum for the thinnest gages, however, there are several
self-compensating factors which tend to equalize the cyclic lives. If the
crack growth behavior is expressed as
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Aa/aN c Kmax" (11)

or

Aa/AN C(1.95 Mo Va7Q n (12)

For two specimens of different thickness but the same initial flaw shape
(a/2c), flaw depth to thickness, (a/t), and cyclic stress the relative grawth

(sa/aN), ¢ [1.950M, wfjfg_tl ﬁ]?

(Aa/AN)z = ] (13)
¢ [1.950M, —-——--(aét) Jytl

rates are

However, since the flaw shapes, fiaw depth to thickness ratios and stresses
are equal, equation 13 reduces to:

Aa/AN t
(Ba/an)y =(‘)'3 (14)

(Aa/AN)2 IE

The residual cyclic 1ife will be proportional to the size of the remaining

Tigament.
Aa = [1-(a/t)i]t (15)
wnere {a/t)i = initial flaw depth to thickness ratio
Therefare,
Aa [1-({a/t)ijt
L el (16)
Ba, [1-(a/t)1‘]t2

However, the initial a/t's were assumed equal; therefore,

-1 (17)
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combining equations 12 and 15

(Aa/AN)] (Aaz) t nf2

t
(na/aN), (ay) ~ %, (%) (18)
AN L
2 1,2
—= = () 19
AN, t, (19)

A review of available cyciic crack growth rate data for 2219-T87 aluminum
reveals that n = 3.5 does a satisfactory job of correlating the data. This
value can, therefore, be used in equation 19.

For the subject program all of the cyclic tests were conducted subsequent
to an overload. Since overloads retard crack growth rates, any comparison
of relative Tives must consider overload effects. The crack growth rate
retardation occurs throughout the plastic zone caused by the overload and
is dependent upon the magnitude of the overload. Since all the overload
plastic zones were greater than the remaining 1igaments, for specimens
having the same overloads and cyclic stress, equation 19 is valid if the
initial flaw shabes and flaw depth-to-thickness raties are equal. Within
these constraints the relative lives of the 0.635 mm (0.025 inch) specimens
should be 2 and 4 times the lives of the 1.91 mm and 4.77 mm (0.75% and
0.188 inch) thick specimens, respectively. A comparison of initial flaw
depth-to-thickness ratios (a/t's) and cyclic life is presented in Figure 84
for the room temperature specimens having a/2c's of 0.15 and 0.30. Only the
specimen which had a cyclic stress of 248 MN/m2 {36 ksi) and an overload of
approximately 310 MN/m2 (45 ksi) were considered in the comparison.
Although not conclusive, there definitely is a trend towards the thinnest
gages having the Tongest lives for equal initial a/t's. The trend is mast
apparent for the longer flaws (a/2c = 0.15) than for the shorter flaws.

For +he 0.635 mm (0.025 inch) rorm temperature tests an a/2c of 0.05 was
substituted for the a/2c of 0.45. These specimens consistently had the
shortest cyclic lives of all the room temperature aluminum tests. For
very thin material the most probable flaw shape is a very long {low a/2c)
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defect such as a scratch. The flaws in the specimens under consideration
were twenty times the depth dimensions in length, therefore, they are
representative of a long scratch. Going to lower aspect ratio flaws could
not be expected to have a significant influence on service tife.

A plot of KIi/KCR versus cycles to failure for the 20 k (-423°F) aluminum
data is presented in Figure 83. The cycles to failure curve from reference
15 is also included on the figure so that a comparison can be made. ATl

of the data falls very close to the reference curve. Although the thirner
gage specimen tests were terminated prior to failure, it is apparent their
cyclic lives would have been at Tleast equivalent to the lives of the thicker
specimens and possible longer.

Generally, the room and Tiquid hydrogen temperature data agrees well with
the reference cycles to failure curves. Since the reference curves were
generated from thick gage data (up to 31.8 mm (1.25 inch)) it can be
concluded that the cycles to failure curves are realistic for all 2219-T87
aluminum. Although the curves are valid for determining proof test factors
for short life structure, the (Figure 82 and 83) should not be considered
in the analysis of long Tife structure. Typical spacecraft structure is
subjected to a minimum of cyclic loadings. Assuming cycles to failure is
uniquely related to KI%/KCR means cyclic crack growth rate (da/dN) is
inversely proportional to cyclic stress level. This »nalysis procedure was
originally developed for short 1ife Spacecraft tankage. Appropriate test
data was developed at stress levels commensurate with the operating stresses
and the test duratiens similar to required service Tives. Within these
constraints the procedure is valid and extremely useful for determining
proaf test factors.

Among the test results in reference 11 were three specimens which failed an
the first cycle subsequent to a simulated proof test. The intent and
procedure applied on the subject program were identical to reference 11;
- being the determination of the minimum guaranteed service 1ife subsequent
to a proof test. Duringthe course of this program there were not any

first cycle failure even though the tests were designed to inflict the
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maximum damage possible during the simulated proof test. Reference 11
speculated that first cycle failures would be rareeven under carefully
controlled Taboratory conditions; the results of this investigation
substantiate that speculation.

5.6.2 6A1-4V STA Titanium Surface Flawed Specimen Cyclic Tests

The titanium cyclic tests were conducted exclusively at room temperature.

The test results have been summarized and are presented in Tables 22 through
30. A1l of the tests were conducted at either 1 or 10 cpm and were continued
until failure {(generally by breakthrough) had occurred. The test results

are also presented in Figure 85 in terms of Kh./KCR versus cycles to failure.
Because of the specimen to specimen variation in KCR (see Section 5.2.2) the
KIi/KCR ratio was estimated for each specimen individually. The EDI records
were used to estimate the K/KCR ratio at the simulated proof load and this
was reduced by the ratio of operating to proof stress to obtain the final
KIi/KCR ratio.

For the heavier gages the failure mode was generally fracture whereas break-
through was the failure mode for the two thinner gages. For comparison
purpose the cycles to failure curve from Figure 82 has been plotted on the
figure. All of the titanium data falls very close to the Tine and is

evenly dispersed about it. Therefore, a given operating to proof stress
ratio will yield similar cyclic Tives for either titanium or aluminum. As
with the aluminum data the failure mode, either breakthrough or fracture

did not influence significantly the cycles to failure. Variations in flaw
shape from a/2c's of 0.05 to 0.45 also did not influence the required

cycles to failure.

As with the alumiﬁum results it was not possible to produce a first cycle
failure subsequent te the proof test cycle. The proof test cycle for all
of the specimens was designed to produce the max mum damage possible. It
js apparent from Figures 58 through 66 that failure was imminent at the
proof test level for most of the cyclic specimens, therefore, it is
reasonable to postulate that first cycle failures after proof testing will
be rate even under Taboratery conditions.
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The variations in toughness of the specimens resulted in a variety of proof
and cyclic stress being used for %hc actual tests. It was not possibie
therefore to assess the influence of gage thickness on cyclic 1ife for
specimens of similar proof and cyclic stresses and initial a/t's and a/2c's
as was done for the aluminum tests.

5.6.3 Summary of Cyclic Test Results

A1l of the cyclic tests were conducted after a simulated proof test cycle.
Generally the simulated proof test was designed to inflict the maximum
possible damage short of causing the flaw to penetrate the specimen. The
residual cyclic 1ives were presented in terms of KIi/KCR versus cycles to
failure. For each alloy-temperature combination, regardless of gage thickness,
filaw shape, or failure mode, the cycles to failure were dependent upon the
KIi/KCR ratio. Therefore, it is possibie to select an operating-to-proof
stress ratio to ensure minimum service life requirements if the relationship
between KIi/KCR versus cycles to failure is known. This is done by assuming
the operating to proof stress ratio is equal to KIi/KCR' This procedure is
valid for pressure vessels subjected to a limited number of cycles and
attempts to employ it ocutside of this range should be avoided.

5.7 Proof Testing Thin-Walled Pressure Vessels

Methodologies for proof testing thick walled pressure vessels for assurance
of minimum service 1ife capabilities have been developed and documented.
An evaluation of the applicability of these procedures to thin wailed
pressure vessels was the function of this and prior studies {10, 11).

If the crack growth associated with leakage was an unstable process (i.e.,
a pre-existing flaw would "pop" through the thickness, and arrest, at the
breakthrough stress) then the maximum flaw size which could exist in a
vessel could be established by proof testing. The crack growth mechanism
under increasing load, for the alloys considered in the program, was a
stable process. Measurable crack growth occurred, however, only when the
specimens were loaded close to failure and significant crack growth only

occurred when failure was imminent. Therefore, for a given proof stress
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material thickness combination,only a very limited band of flaw sizes can
produce significant crack growth without causing leakage. The possibility
of a proof test producing sufficient crack growth to diminish the vessel's
service 1ife capabilities without causing failure of the vessei is extremely
remote. A proof test can be used to assure that the service failure mode

is leakage as well as providing a high degree of confidence in the residual
service life capability of the vessel. Proof testing thin walled pressure
vessels, therefore, is an important tool in assuring minimum service 1ife
requirements and preventing catastrophic failures during service.
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6.0 CONCLUSIONS

The following conclusions were derived from the results of the experimental
programs presented in this report and reference 11. Six thicknesses of
2219-T87 aluminum base metal surface flaw and center crack specimens ranging
from 9.53 to 0.635 mm {0.375 to 0.025 inch) were tested at temperatures ranging
from 295K to 20K (72°F to -423°F). Additionally, 6A1-4V STA titanium base
metal specimens were tested in three thicknesses 3.18, 2.03 and 1.02 mm

(0.125, 0.080 and 0.040 inch) at room temperature. All of the tests were
conducted on uniaxial specimens. Extrapolation of the following conclusions
to other conditions without additional experimental verification should be

avoided.
1. Significant stable c¢crack growth under increasing load can occur
prior to failure.
2. Initiai flaw shape and material have a significant influence on

the extent of the flaw growth.

3. Test temperature and thickness do not have a significant effect
on the flaw growth when the data is viewed in terms of KIi/KCR'

4, Low aspect ratio flaws (a/2¢ = 0.15} experience greater depthwise
flaw growth than high aspect ratio flaws (a/2c = 0.45).

5. High aspect ratio flaws experience greater lengthwise flaw
growth than low aspect ratio flaws.

6. Significant flaw growth (a 10 percent or greater increase in
flaw dimension) will occur only when a specimen is loaded near

its failure load.

7. Proof testing can be used to assure early service 1ife failures
will be leakage rather than catastrophic fractures.

8. Miinimum service lives can be assured, with a high degree of
confidence, if a properly designed proof test is employed.
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Figure 25 : GROSS AREA STRESS AT INITIATION OF CRACK GROWTH VERSUS

INITIAL CRACK LENGTH FOR 2219-T87 ALUMINUM BASE METAL
CENTER CRACK PANELS AT ROOM TEMPERATURE
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STRESS INTENSITY AT INITIATION OF
CRACK GROWTH K(ksi in)
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Figure 34: STRESS INTENSITY AT INITIATION OF CRACK GROWTH

VERSUS THICKNESS FOR 6A1-4V TITANIUM CENTER
CRACK PANELS
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Figure 36 : K __ VERSUS RATIO OF FINAL TO INITIAL CRACK LENGTH

cr

FOR 6Ai-4V STA TITANIUM CENTER CRACK PANELS
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STRESS, & , (ksi)
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Figure 37 : GROWTH-ON-LOADING TEST RESULTS FOR 4.78mm(0.188 inch)
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OPEN SYMBOLS ~ INITIAL FLAW DEPTH

B.T.~ BREAKTHROUGH

CLOSED SYMBOLS ~FINAL FLAW DEPTH SINGLE OPEN SYMBOL ~ NO GROWTH
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Figure 38 : GROWTH-ON-LOADING TEST RESULTS FOR 1.91mm(0.075 inch)

THICK 2219-T87 ALUMINUM BASE METAL AT ROOM TEMPERATURE
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OPEN SYMBOLS~ INITIAL FLAW DEPTH

CLOSED SYMBOLS ~ FINAL FLAW DEPTH

B.T, ~~BREAKTHROUGH

SINGLE OPEN SYMBOL ~ NO GROWTH
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Figure 39 :GROWTH-ON-LOADING TEST RESULTS FOR 0.635mm (0.025 inch)
THICK 2219-T87 ALUMINUM BASE METAL AT ROOM TEMPERATURE
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OPEN SYMBOLS ~ INITIAL FLAW DEPTH
CLOSED SYMBOLS ~FINAL FLAW DEPTH
B.T, ~BREAKTHROUGH
SINGLE OPEN SYMBOL ~ NO GROWTH
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Figure 40 : GROWTH-ON-LOADING TEST RESULTS FOR 2219-T87 ALUMINUM
BASE METAL AT LIQUID HYDRO GEN TEMPERATURE
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W a8 Py

THICKNESS | 295°Kk | 78°K | 20°K

5 o (INCH) | (72°F) [-320°F}|(-423°F)
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ol 1 1 L | 1
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% INCREASE IN FLAW DEPTH

Figure 41 : 2219-T87 ALUMINUM BASE METAL GROWTH-ON-LOADING
TEST RESULTS (o/2c = 0.15} ( REFERENCE 11)

NOTE: CONTINUOUS
LOADING

CRACK TIP VELOCITY

Aa
Y

Ker -'K-lE

Figure 42: SCHEMATIC REPRESENTATION OF CRACK TiP VELOCITY
VERSUS STRESS INTENSITY
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STRESS IINTENSITY CURVES

CRACK GROWTH RESISTANCE CURVES
X FLAW DEPTH = THICKNESS
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Figure 45 CRACK GROWTH RESISTANCE AND STRESS INTENSITY CURVES (INCLUDING MK)
VERSUS CRACK DEPTH FOR ROOM TEMPERATURE 2219-T87 ALUMINUM
BASE METAL SPECIMENS ( t =4.77 mm (0.188 inch))

94



STRESS INTENSITY AND CRACK GROWTH RESISTANCE
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. CRACK GROWTH RESISTANCE AND STRESS INTENSITY
(INCLUDING MK) VERSUS FLAW DEPTH FOR ROOM

TEMPERATURE 2219-T87 ALUMINUM BASE METAL
(+t=1.21 mm (0,075 inch))
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Figure 47 : CRACK GROWTH RESISTANCE AND STRESS INTENSITY CURVES VERSUS
FLAW DEPTH FOR ROOM TEMPERATURE 2219-T87 ALUMINUM BASE
METAL SPECIMENS (t =4,77 mm (0.188 inch))
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STRESS INTENSITY AND CRACK GROWTH RESISTANCE
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Figure 48 : CRACK GROWTH RESISTANCE AND STRESS INTENSITY VERSUS

FLAW DEPTH FOR ROOM TEMPERATURE 2219-T87 ALUMIN UM
BASE METAL { + =1,91 mm ( 0.075 inch))
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0.8- 0 /@/

O

O
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0.635mm(0.025 inch) =t = 4.77mm(0.188 inch)

1
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Figuore 50 : RELATIONSHIP BETWEEN a/t AND a/2c FOR LEAKAGE
RATHER THAN FRACTURE IN THIN GAGE 2219-T87
ALUMINUM AT ROOM TEMPERATURE
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OPEN SYMBOLS ~ INITIAL FL# W DEPTH
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Figure 55 : GROWTH-ON-LOADING TEST RESULTS FOR 3.18mm(0.125 inch)
THICK 6Al=4Vv STA TITANIUM AT ROOM TEMPERATURE
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STRESS, 07, (ksi)

OPEN SYMBOLS ~ INITIAL FLAW DEPTH B.T.~ BREAKTHROUGH
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Figure 56 : GROWTH-ON=LOADING TEST RESULTS FOR 2.03mm (0.080 inch)
THICK 6Al-4V STA TITANIUM AT ROOM TEMPERATURE
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OPEN SYMBOLS ~ INITIAL FLAW DEPTH
CLOSED SYMBOLS ~ FINAL FLAW DEPTH

B.T.~BREAKTHROUGH
SINGLE OPEN SYMBOL ~NO GROWTH
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Figure 57 : GROWTH-ON-LOADING TEST RESULTS FOR 1.02mm (0.040 inch)

THICK 6Al-4V STA‘“TI;TANIUM- AT ROOM TEMPERATURE
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Figure 70: ASSUMED RELATIONSHIPS 6Al-4V STA TITANIUM USED IN
CRACK GROWTH RESISTANCE CURVE CALCULATIONS
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VERSUS CRACK DEPTH FOR ROOM TEMPERAT URE 6Al-4V STA
TITANIUM BASE METAL (INCLUDES MK CORRECTION)
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DRIGINAL PAGE IS »

/GROWTH ON LOADING

L GROWTH ON LOADING

Afa;;;HONLOAmNG

Figure 74: TYPICAL ALUMINUM GROWTH-C ~-LOADING
SPECIMEN FRACTURE FACES
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Figure 75: TYPICAL TITANIUM GROWTH-ON-LOADING

SPECIMEN FRACTURE FACES
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Table 1 : CTHEMICAL COMPOSITION OF 2219-T87 ALUMINUM AND
6A1-4V TITANIUM SHEET
2219-187 6Al1-4v
ALUMINUM TITANIUM
SPECIFICATION SPECIFICATION
ELEMENT % iMAXlMUMIMlNlMUM MEASUREDMAXIMU lNIMU'MIMEASURED
CARBON 0.08 S 0.02
NITRO GEN 0.05 —_ 0.012
IRON 0.30 — 0.190 0.25 —— 0.1%0
ALUMINUM BALAINCE BALANCE| 6.75 5.50 6.20
VANADIUM 0.15 0.05 0.06 4,50 3.50 4.00
OXYGEN 0.15 — 0.17
TITANIUM 0.10 0.02 0.04 BALANCE BALANCE
COPPER 6.80 5.80 6.33
MANGANESE 0.40 0.20 0.30
MAGNESIUM 0.20 — 0.018
ZIRCONIUM 0.25 0.10 0.16
SILICON 0.20 — 0.12
ZINC 0.10 — 0.03
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LIQUID HYDROGEN TEMPERATURE 2219-T87 ALUMINUM

Table 19

BASE METAL TEST RESULTS (t = 4.77mm(0.188 inch))
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Table 31: ROOM TEMPERATURE 6A1-4V STA TITANIUM BASE METAL

STATIC FRACTURE TEST RESULTS

GAGE FRACTURE TOUGHNESS

SPECIMEN | yiciNEss [FLAW SHAPE 3/2
NUMBER - o/2¢ e MN/m

Y mm (inch) (ksi Vim)
3TR11-1  |3.18 (0.125)|  0.15 65.7 (59.8)
3TR13-1 0.30 50.1 (45.6)
3TR14-1 0.45 63.2 (57.2)
3TR83-1  {2.03 (0.080) 0.30 59.8 (54.4)
3TR84-1 0.45 51.2 (46.6)
3TR4T-1  [1.02 (0.040) 0.15 61.5 (56.0)
4TR41-2 0.15 55.9 (50.9)
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